Assessment and improvement of structural safety under seismic actions of existing constructions:

SEMINAR

R.C. STRUCTURES:
INVESTIGATION METHODOLOGIES AND TECHNIQUES: INSPECTIONS, SURVEYS, IN-SITU AND LABORATORY TESTS, MONITORING

Prof. Eng. Claudio Modena
claudio.modena@dicea.unipd.it

29 November 2015,
Beer Sheva, Shamoom College
THE KNOWLEDGE PROCESS
EUROCODE 8: DESIGN OF STRUCTURES FOR EARTHQUAKE RESISTANCE
PART 3: ASSESSMENT AND RETROFITTING OF BUILDINGS

CONTENTS

1. GENERAL
2. PERFORMANCE REQUIREMENTS AND COMPLIANCE CRITERIA
3. INFORMATION FOR STRUCTURAL ASSESSMENT
 3.1 GENERAL INFORMATION AND HISTORY
 3.2 REQUIRED INPUT DATA
 3.3 KNOWLEDGE LEVELS
 3.4 IDENTIFICATION OF THE KNOWLEDGE LEVEL
 3.5 CONFIDENCE FACTORS
4. ASSESSMENT
5. DECISIONS FOR STRUCTURAL INTERVENTION
6. DESIGN OF STRUCTURAL INTERVENTION

ANNEX A (INFORMATIVE) REINFORCED CONCRETE STRUCTURES
PROCEDURES FOR SAFETY ASSESSMENT AND DESIGN: KNOWLEDGE STEPS

INFORMATION FOR STRUCTURAL ASSESSMENT

- Available documentation specific to the building in question
- Relevant generic data sources (e.g. contemporary codes and standards)
- Field investigations
- In-situ and/or laboratory measurements and tests

Cross-checks should be made between the data collected from different sources to minimise uncertainties.
On site tests on existing structures: the knowledge process

PROCEDURES FOR SAFETY ASSESSMENT AND DESIGN: KNOWLEDGE STEPS

INFORMATION FOR STRUCTURAL ASSESSMENT

REQUIRED INPUT DATA

- Structural system
- Foundations & ground conditions
- Dimensions and cross-sectional properties of the building elements
- Mechanical properties and condition of materials
- Seismic design criteria used
- Present and/or the planned use of the building
- Re-assessment of imposed actions
- Present structural damage, if any, including earlier repair measures
On site tests on existing structures: the knowledge process

PROCEDURES FOR SAFETY ASSESSMENT AND DESIGN: KNOWLEDGE STEPS

- **Historic information**: original design reports, events occurred, etc...
- **Geometry**: outline and detailed construction drawings, visual survey
- **Details**: simulated design (based on regulatory documents and state of the practice used at the time of construction), in-situ inspections
- **Materials**: destructive and non-destructive testing for complementing the information of standards or original design specifications and test

FACTORS WHICH IDENTIFY THE KNOWLEDGE LEVEL

KNOWLEDGE LEVELS

On site tests on existing structures: the knowledge process

A SUMMARY OF THE KNOWLEDGE STEPS

HISTORICAL AND CRITICAL ANALYSIS
- HISTORY OF BUILDING, CHANGES, PAST EVENTS
 - historical and archival investigations

GEOMETRY
- GEOMETRY, DETAILS, CRACK PATTERNS AND DEFORMATIONS
 - in-situ surveys

DETAILS
- CONNECTIONS, NO. OF REINFORCEMENT BARS, etc.
 - in situ checking

MATERIAL PROPERTIES
- MECHANICAL CHARACTERISATION OF CONCRETE AND REBARS
 - in-situ and lab testing

KNOWLEDGE LEVEL AND CONFIDENCE FACTORS

INVESTIGATION METHODOLOGIES AND TECHNIQUES
On site tests on existing structures: the knowledge process

PROCEDURES FOR SAFETY ASSESSMENT AND DESIGN: KNOWLEDGE STEPS

INFORMATION FOR STRUCTURAL ASSESSMENT

<table>
<thead>
<tr>
<th>Knowledge Level</th>
<th>Geometry</th>
<th>Structural details</th>
<th>Material properties</th>
<th>Confidence factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>KL1</td>
<td></td>
<td>Limited in situ checking</td>
<td>Limited inspection and testing</td>
<td>1.35</td>
</tr>
<tr>
<td>KL2</td>
<td>Structural Survey</td>
<td>Extended and comprehensive in situ checking</td>
<td>Extended inspection and testing</td>
<td>1.20</td>
</tr>
<tr>
<td>KL3</td>
<td></td>
<td></td>
<td>Comprehensive inspection and testing</td>
<td>1.00</td>
</tr>
</tbody>
</table>
On site tests on existing structures: the knowledge process

Table 3.1: Knowledge levels and corresponding methods of analysis (LF: Lateral Force procedure, MRS: Modal Response Spectrum analysis) and confidence factors (CF).

<table>
<thead>
<tr>
<th>Knowledge Level</th>
<th>Geometry</th>
<th>Details</th>
<th>Materials</th>
<th>Analysis</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>KL1</td>
<td></td>
<td>Simulated design in accordance with relevant practice and from limited in-situ inspection</td>
<td>Default values in accordance with standards of the time of construction and from limited in-situ testing</td>
<td>LF-MRS</td>
<td>CF_KL1</td>
</tr>
<tr>
<td>KL2</td>
<td>From original outline construction drawings with sample visual survey or from full survey</td>
<td>From incomplete original detailed construction drawings with limited in-situ inspection or from extended in-situ inspection</td>
<td>From original design specifications with limited in-situ testing or from extended in-situ testing</td>
<td>All</td>
<td>CF_KL2</td>
</tr>
<tr>
<td>KL3</td>
<td></td>
<td>From original detailed construction drawings with limited in-situ inspection or from comprehensive in-situ inspection</td>
<td>From original test reports with limited in-situ testing or from comprehensive in-situ testing</td>
<td>All</td>
<td>CF_KL3</td>
</tr>
</tbody>
</table>

NOTE: The values ascribed to the confidence factors to be used in a country may be found in its National Annex. The recommended values are CF_KL1 = 1.35, CF_KL2 = 1.20 and CF_KL3 = 1.00.
3.5 Confidence factors

- To determine the properties of existing materials to be used in the calculation of the capacity
- When capacity is to be compared with demand for safety verification, the mean values obtained from in-situ tests and from the additional sources of information, shall be divided by the confidence factor, CF, for the appropriate knowledge level
- Different CF can be selected for different materials according to statistical considerations performed on a set of meaningful data for the studied elements and evaluation methods of proven validity
PROCEDURES FOR SAFETY ASSESSMENT AND DESIGN: KNOWLEDGE STEPS

Additional required input data for RC structures

Geometry

- Identification of earthquake-resistant elements
- Floor warping
- Beams, columns and walls geometry
- width of T- beam wings
- eccentricity between beams, columns and walls
On site tests on existing structures: the knowledge process

PROCEDURES FOR SAFETY ASSESSMENT AND DESIGN: KNOWLEDGE STEPS

Details

- Longitudinal rebars in beams, columns and walls
- Stirrups step, diameters and geometry
- Beam–column joint details
- Longitudinal rebars for M in T-beams
- Support length and restraints of floors
- Cover thickness
- Rebars overlap length

Materials

- Concrete compressive strength
- Yield strength, failure strength and elongation of rebars
SIMULATED DESIGN

- simulated design is a procedure used if technical documents are limited and extended investigations can not be performed.
- it allows the definition of the amount and layout of reinforcement, both longitudinal and transverse, in all elements participating in the vertical and lateral resistance of the building \Rightarrow KL1.
- the design should be carried out based on regulatory documents and state of the practice used at the time of construction.
On site tests on existing structures: the knowledge process

SIMULATED DESIGN

What we need?

- the knowledge of the period of construction
- find regulatory documents at the time of construction
- search renowned manuals commonly used at the time of construction
- identify the state of practice used at the time of construction also studying other projects, more complete, of the same period
SIMULATED DESIGN

The main step are:

1. **identification of the period of construction** → very important information for the collection of historical data

2. **identification and study of the structural scheme** → floors, beams, columns, roofs, etc... and study of their structural role (dead loads, horizontal loads)

3. **choice of the calculation method** → in non-seismic areas structures were Gravity Load Design using very simplified structural schemes (columns with only simple axial load, series of beams simply supported, etc...)

4. **identification of loads** → dead and live loads relating to the original use
SIMULATED DESIGN

5. **definition of the amount and layout of reinforcement**, both longitudinal and transverse, in all elements participating in the vertical and lateral resistance of the building → if stresses are known design and assessment of rebars can be performed using abaci and tables of the time of construction; concerning materials, in the simulated design values of strength are those of the state of practice at the time of construction

6. **onsite investigations** → sampling on similar structural elements to verify the performed rebars design

7. **review of the simulated design** → correction of rebars details according to onsite investigation results
ON SITE TESTS ON R.C. STRUCTURES
Material Properties

Concrete
- Compression tests until failure on cores to obtain mechanical properties → concrete compressive strength

Steel
- Tensile tests until failure on rebar samples → yield strength, failure strength and elongation at failure

Non-destructive tests
- Non-destructive tests of demonstrated reliability are admitted but they cannot substitute those destructive → they can be used to integrate results from destructive tests only if calibrated on them
On Site Tests on R.C. Structures

TYPES OF INVESTIGATIONS

- Onsite tests: non-destructive (NDT), medium destructive (MDT), destructive (DT)
- Laboratory tests on elements onsite sampled (rebar pieces, concrete cores)

In particular non-destructive tests:

- effective for comparing data
- fast, cheap and low invasive
- results must be calibrated with data from destructive tests
- most common NDT: Schmidt hammer, covermeter, ultrasonic pulse velocity, pull-out test
On site tests on existing structures: the knowledge process

WHY PERFORMING TESTS?

- identification and localization of cracks, honeycombings and defects inside the RC structure
- determination of concrete homogeneity
- definition of the amount and layout of reinforcement bars
- increasing of the knowledge level after performing a limited number of destructive tests
- modification of the use of the structure
- resistance check after load application
On site tests on existing structures: the knowledge process

SAMPLING

- during the sampling campaign a primary aspect to evaluate is the number and location of points to investigate.
- sampling points must represent the whole structure, summarizing structural feature variability.
- if the structure is very heterogeneous, investigation accuracy must be increased.
- a well-defined number of investigations does not exist.
SAMPLING

- case-by-case a right compromise between knowledge level, imposed deadline, money and invasiveness need to be reached
- to minimize investigation invasiveness prior NDT or MDT for identifying homogeneous areas are recommended
- a limited number of destructive tests allows to calibrate results from non-destructive and medium destructive tests and to extend them to an higher number of points
On site tests on existing structures: the knowledge process

SAMPLING LOCALIZATION

- Sampling needs to be carried out in areas with lower stress concentrations.
- Attention to representativeness of samples.
- For example, in columns mechanical characteristics are not equal all along their height (decrease from the bottom to the top), so tests performed in the middle of the height are preferable.
- In beams midspan region and areas close to bearing points are not good points for investigations (high values of bending moment and shear).
On site tests on existing structures: the knowledge process

TESTING

- Carbonation depth test
- Local scarification
- Survey of the amount and layout of rebars (caliper and covermeter)
- Sampling of rebar pieces
- Corings
- Schmidt hammer tests, ultrasonic tests, pull-out tests
On site tests on existing structures: the knowledge process

TESTING

- aggregate characterization
- study of porosity
- definition of compositional ratios
- identification of alteration phenomena

Visual analysis

BSE image of secondary gypsum
Study of porosity
Scanner image of a polish surface
COST AND RELIABILITY

<table>
<thead>
<tr>
<th>Test method</th>
<th>Cost</th>
<th>Execution velocity</th>
<th>Damage</th>
<th>Representativeness</th>
<th>Correlation between concrete strength and measured values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corings</td>
<td>high</td>
<td>slow</td>
<td>moderate</td>
<td>moderate</td>
<td>excellent</td>
</tr>
<tr>
<td>Schmidt hammer</td>
<td>very low</td>
<td>fast</td>
<td>none</td>
<td>info about concrete surface</td>
<td>weak</td>
</tr>
<tr>
<td>Ultrasonic</td>
<td>low</td>
<td>fast</td>
<td>none</td>
<td>good – all thickness can be investigated</td>
<td>moderate</td>
</tr>
<tr>
<td>Pull-out</td>
<td>moderate</td>
<td>fast</td>
<td>limited</td>
<td>info about concrete surface</td>
<td>good</td>
</tr>
</tbody>
</table>
SCHMIDT REBOUND HAMMER TEST

Principle: the rebound of an elastic mass depends on the hardness of the surface against which it hits

- standard: UNI 12504-2:2001

![Diagram of Schmidt rebound hammer test components](image)
On site tests on existing structures: the knowledge process

SCHMIDT REBOUND HAMMER TEST

- to evaluate concrete homogeneity
- to define concrete area with decay phenomena
- to obtain qualitative information about superficial concrete strength (max 30 mm in depth)
- calibration curve supplied with the hammer correlate rebound distance with surface concrete compressive strength
GENERAL PROCEDURE FOR SCHMIDT HAMMER TEST

- check periodically the instrument using the appropriate anvil and in any case perform few beats before recording readings
- make 9-25 readings on a squared area of side = 300 mm
- minimum distance between two readings = 25 mm
- smooth, clear and dry surface without plaster (abrade the surface)
- avoid joints, honeycomlings, pores
- element thickness > 10 cm, side > 12 cm (min mass of the element)
- the average rebound index must be obtained eliminating values very different from the mean value
- if over the 20% of all measurements differs from the mean value for more than 6 units, all readings must be eliminated
GENERAL PROCEDURE FOR SCHMIDT HAMMER TEST

Factors which can affect or invalidate results:

- **position of the mass relative to the vertical** → it can affect the rebound number due to the action of gravity on the mass in the hammer
- **concrete** → type of coarse aggregate, type of cement
- **structure** → surface, size, shape, rigidity and age of the specimen, curing conditions
- **serviceability state** → carbonation (overestimation up to the 50% of the rebound numbers), moisture conditions (rebound numbers are lower for well-cured dried specimens)
ULTRASONIC TESTING

Method: Measurement of the velocity of ultrasonic pulses (a frequency of 50 kHz to 60 kHz is suitable for most common applications) of longitudinal vibrations passing through concrete.

- The equipment consists essentially of an electrical pulse generator, a pair of transducers, an amplifier and an electronic timing device for measuring the time interval between the initiation of a pulse generated at the transmitting transducer and its arrival at the receiving transducer.
ULTRASONIC TESTING

- Ultrasonic pulse velocity is linked to concrete elastic modulus which can be correlated with concrete resistance.

- 3 type of waves are created when the surface of a large solid elastic medium is disturbed by a dynamic or vibratory load:
 - superficial waves (or Rayleigh)
 - shear waves (or transverse)
 - compression waves (or longitudinal)

On site tests on existing structures: the knowledge process
ULTRASONIC TESTING

- relationship between elastic constants and the velocity of an ultrasonic pulse travelling in an isotropic elastic medium of infinite dimensions:

\[V = \sqrt{\frac{E_dK}{\rho}} \]

\[K = \frac{1-\nu}{(1+\nu)(1-2\nu)} \]

- \(E_d \) = elastic modulus
- \(\rho \) = density
- \(\nu \) = Poisson coefficient

- pulse velocity is not significantly affected by the dimensions of the test specimen, except when one or more of the lateral dimensions is small relative to the wavelength of the pulse.
ULTRASONIC TESTING

Use

- good acoustical coupling between the concrete surface and the face of the transducer provided by a medium such as petroleum jelly, liquid soap or grease
- transducer: usually a cylinder of 50-mm diameter
- frequencies as low as 10 kHz may be used for very long concrete path lengths and as high as 1 MHz for mortars and grouts or for short path lengths → 10 ÷ 40 kHz for $L_{\text{max}} = 15 \text{ m}$ / 60 ÷ 200 kHz for $L < 50 \text{ mm}$
- calibration using a steel bar with a transit time of the pulse of about 25μs
On site tests on existing structures: the knowledge process

ULTRASONIC TESTING

Transducer arrangement (UNI EN 12504-4: 2005)

It is possible to make measurements of pulse velocity by placing the two transducers on either:

- A-opposite faces (direct transmission)
- B-adjacent faces (semi-direct transmission)
- C-the same face (indirect or surface transmission)
On site tests on existing structures: the knowledge process

ULTRASONIC TESTING

Results (UNI EN 12504-4: 2005)

- for direct and semi-direct transmission longitudinal pulse velocity is given by:

\[V = \frac{L}{T} \]

where

- \(V \) is the longitudinal pulse velocity
- \(L \) is the path length
- \(T \) is the time taken by the pulse to traverse that length
ULTRASONIC TESTING

Results (UNI EN 12504-4: 2005)

- in indirect transmission path length is not measured \(\Rightarrow\) preferable to make a series of measurements with the transducers at different distances apart to eliminate this uncertainty

- the transmitting transducer should be placed in contact with the concrete surface at a fixed point \(x\) and the receiving transducer should be placed at fixed increments \(x_n\) along a chosen line on the surface

- transmission times recorded should be plotted as points on a graph showing their relation to the distance separating the transducers
ULTRASONIC TESTING

Results (UNI EN 12504-4: 2005)

- The slope of the best straight line drawn through the points should be measured and recorded as the mean pulse velocity along the chosen line on the concrete surface.

![Diagram of pulse velocity measurement](image.png)

Key

- **R** is the receiver transducer
- **T** is the transmitter transducer

Figure A.1 — Example of the determination of pulse velocity by indirect (surface) transmission
ULTRASONIC TESTING

- the relationship between elastic modulus and compression strength of concrete comes from an experimental calibration → at least 10 sets composed by 3 concrete samples to fill the widest range of possible strength values and 3 velocity readings for each samples

- the correlation curve is the following:

\[f_c = Ae^{BV} \]

where

- \(f_c \) = equivalent cubic strength
- \(e \) = base of the natural logarithm
- \(V \) = pulse velocity
- \(A \) and \(B \) constants
ULTRASONIC TESTING

Factors affecting pulse velocity

- concrete properties → aggregate size, grading, type, and content, cement type, water-cement ratio, admixtures, age of concrete
- transducer contact
- temperature of concrete
- moisture and curing condition of concrete
- path length
- size and shape of a specimen
- level of stress
- presence of reinforcement bars
ULTRASONIC TESTING

Benefit

- suitable for the study of homogeneity of concrete \(\rightarrow\) the most valid and reliable application because it does not require a correlation with a value of concrete strength \(\rightarrow\) velocity maps

- locating areas of honeycombed concrete, internal cracks and voids \(\rightarrow\) if a pulse comes upon an air-filled crack or a void it will diffract around the defect and the pulse travel time will be greater than that through similar concrete without any defect

Bungey & Millard, 1996
ULTRASONIC TESTING

Benefit

- the depth of an air-filled crack or a void can be estimated by the pulse velocity method

\[h = x \sqrt{\left(\frac{T_c}{T_s}^2 - 1\right)} \]

where

- \(X = \) distance to the transducer from the crack (note that both transducers must be placed equidistant from the crack)
- \(T_c = \) transit time around the crack
- \(T_s = \) transit time along the surface of the same type of concrete without any crack

On site tests on existing structures: the knowledge process
On site tests on existing structures: the knowledge process

ULTRASONIC TESTING

Benefit

- strength valuation ➝ correlation with samples made in laboratory
- valuation of concrete decay
- elastic modulus valuation
- monitoring of strength evolution during time

<table>
<thead>
<tr>
<th>Longitudinal pulse velocity</th>
<th>Quality of concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>km/s.10^3 ft/s</td>
<td></td>
</tr>
<tr>
<td>> 4.5</td>
<td>excellent</td>
</tr>
<tr>
<td>3.5 - 4.5</td>
<td>good</td>
</tr>
<tr>
<td>3.0 - 3.5</td>
<td>doubtful</td>
</tr>
<tr>
<td>2.0 - 3.0</td>
<td>poor</td>
</tr>
<tr>
<td>< 2.0</td>
<td>very poor</td>
</tr>
</tbody>
</table>
SONREB METHOD

Principle: relationship between compressive strength of concrete, rebound hammer number, and ultrasonic pulse velocity for compensating mistakes made using methods individually

SONic + REBound

Concrete compressive strength f_c is assessed using the following expression:

$$f_c = a \cdot S^b \cdot V^c$$

where

S = rebound hammer number

V = pulse velocity

$a, b, c =$ constants
SONREB METHOD

- In technical literature series of specific correlations between the combination of rebound hammer number (R) and ultrasonic pulse velocity (V) and the compressive strength (S) of concretes:

 \[
 f_c = 7.7 \cdot 10^{-11} \cdot S^{1.4} \cdot V^{2.6}
 \]
 norme RILEM, 1993

 \[
 f_c = 6.7 \cdot 10^{-8} \cdot S^{1.246} \cdot V^{1.85}
 \]
 Gasparik, 1992

 \[
 f_c = 1.0 \cdot 10^{-9} \cdot S^{1.058} \cdot V^{2.446}
 \]
 Di Leo-Pascale, 1994

 \[
 f_c = 3.7 \cdot 10^{-7} \cdot S^{1.127} \cdot V^{1.690}
 \]
 Del Monte et al., 2004

RELATIONSHIP NOT GENERALLY VALID

CALIBRATION IS REQUIRED
On site tests on existing structures: the knowledge process

SONREB METHOD

Vona, 2011
SONREB METHOD

Calibration procedure

1. Input data
 - compressive strength values f_c from destructive tests (corings)
 - S and V values from NON destructive tests (Schmidt hammer tests and ultrasonic pulse velocity method)

2. As known f_c, S and V, constants a, b and c of Sonreb curves can be evaluated to obtain f_c through a linear regression using Excel:

$$f_c = a \cdot S^b \cdot V^c$$

IT ALLOWS TO ESTIMATE RESISTANCE ALSO IN POINTS WHERE ONLY PND WERE CARRIED OUT
On site tests on existing structures: the knowledge process

SONREB METHOD

Calculation method of f_{cm}

1. compressive strength values f_c from cores onsite sampled
2. definition of a, b and c constants of Sonreb curves through a linear regression using Excel and starting from f_c, S and V values
3. calculation of cylindrical strength using Sonreb curves where only non-destructive tests were performed
4. calculation of average f_{cm} value as average value of destructive results and values from Sonreb curves
PULL-OUT TEST

Method: the pull-out test measures the force required to pull an embedded metal insert with an enlarged head from a concrete specimen or a structure (UNI EN 12504-3: 2003)

Instrument

- embedded metal insert → cast-in or device installed afterwards by drilling into the hardened concrete
- extractor (hydraulic jack)
- hydraulic pump
- bearing ring
- load cell
PULL-OUT TEST

Linear relationship between pull-out force and concrete strength:

\[f_F = 1.33 \cdot (F - 10) \quad 10 \leq F \leq 60 \]

Key

- \(F \) — Pull-out force in N in accordance with EN 12504-3

Figure 4 — Basic curve for pull-out force test
COVERMETER

Principle: magnetic induction applicable to ferromagnetic materials

- used for determining the **location, sizes and depth of reinforcement**
- preliminary test to some other form of testing in which **reinforcement should be avoided** or its nature taken into account, e.g. extraction of cores, ultrasonic pulse velocity measurements or near to surface methods
- a grid 60 cm x 60 cm must be used
COVERMETER

Limitations

- It is very slow and labour intensive.
- The results are affected by the presence of more than one reinforcing bar in the test area, by laps, by second layers, by metal tie wires and by bar supports.
- The method is unsuitable in the case of closely packed bar assemblies.
- Cover thickness max 50 mm.
- The accuracy is reduced if rough or undulating surfaces are present, e.g. exposed aggregate finishes. The effect on the indicated cover will be similar in magnitude to the surface irregularities within the area of the search head.
On site tests on existing structures: the knowledge process

SCARIFICATION

- **Aim**: determining the location, sizes and depth of reinforcement
- testing point is chosen according to location of rebar from covermeter results
- hammer or chisel to remove concrete cover
- caliper to check bar diameter
On site tests on existing structures: the knowledge process

CORINGS

Method: taking cylindrical concrete cores using a core drill according to UNI EN 12504-1: 2002

- it is the most reliable method to identify onsite concrete compressive strength
- it is the most effective method to use for the calibration of data from non-destructive tests
- for identifying the presence of deleterious matter in the concrete
- for ascertaining the strength of the concrete for design purposes
- for the study of the mix design of concrete
- for determining specific properties of the concrete not attainable by non-destructive methods
On site tests on existing structures: the knowledge process

CORINGS

INVESTIGATION METHODOLOGIES AND TECHNIQUES
CORINGS

- Prepare the ends of cores for compression tests in accordance with UNI EN 12390-3

- Final concrete compressive strength of cores can be affected by numerous factors. → It should differ from samples prepared during the casting.

Standard Failure

NOT satisfactory failure
CORINGS

Cores diameter

- generally it varies in the range 75 ÷ 150 mm
- always core diameter $d \geq 3$ maximum aggregate size
- according to the test (compression or determination of elastic modulus) core height h can vary from $d=h$ to $d \geq 2.5h$
- final concrete compressive strength of cores can be affected by honeycomings, rebars, vibrations, drilling direction (if perpendicular to the casting, decreasing between 5 ÷ 8% for concrete of grade 20/25), location (resistance decrease from the bottom to the top), presence of humidity (decreasing up to 15% of the final strength)
On site tests on existing structures: the knowledge process

Assessment of in-situ compressive strength in structures and precast concrete components

This European Standard was approved by CEN on 10 November 2005.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a National Standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

EN 13791:2007 (E)

Contents

Foreword ... 4
Introduction .. 6
1 Scope ... 7
2 Normative references .. 7
3 Terms and definitions ... 8
4 Symbols and abbreviations ... 9
5 Principles .. 10
6 Characteristic in-situ compressive strength in relation to compressive strength class 10

7 Assessment of characteristic in-situ compressive strength by testing of cores .. 11
7.1 Specimen .. 11
7.2 Number of test specimens ... 11
7.3 Assessment .. 11
7.3.1 General ... 11
7.3.2 Approach A ... 12
7.3.3 Approach B ... 12

8 Assessment of characteristic in-situ compressive strength by indirect methods ... 13
8.1 General ... 13
8.1.1 Methods ... 13
8.1.2 Alternative 1 – Direct correlation with cores .. 14
8.1.3 Alternative 2 – Calibration with cores for a limited strength range using an established relationship ... 14
8.2 Indirect tests correlated with in-situ compressive strength, (Alternative 1) ... 14
8.2.1 Application ... 14
8.2.2 Testing procedure .. 14
8.2.3 Establishing the relationship between test result and in-situ compressive strength 14
8.2.4 Assessment of in-situ compressive strength ... 14
8.3 Use of a relationship determined from a limited number of cores and a basic curve, (alternative 2) ... 15
8.3.1 General ... 16
8.3.2 Testing .. 16
8.3.3 Procedure ... 16
8.3.4 Validity of relationships .. 16
8.3.5 Estimation of in-situ compressive strength ... 19
8.4 Combination of in-situ strength test results by various test methods ... 19
8.4.1 Assessment where conformity of concrete based on standard tests is in doubt 20
8.4.2 Assessment report .. 21

Annex A (informative) Factors influencing core strength .. 22
A.1 General .. 22
A.2 Concrete characteristics ... 22
A.2.1 Moisture content ... 22
A.2.2 Voidage .. 22
A.2.3 Direction relative to the casting .. 22
A.3 Imperfections ... 22
A.4 Testing variables ... 22
A.5 Diameter of core .. 22
A.6 Length/diameter ratio .. 22

© 2007 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN 13791:2007 E.
On site tests on existing structures: the knowledge process

7. Assessment of characteristic in-situ compressive strength by testing of cores

7.1 Specimens

Cores shall be taken, examined and prepared in accordance with EN 12504-1 and tested in accordance with EN 12504-3. Except for those to which it is not feasible, cores shall be exposed to a laboratory atmosphere for at least 3 days prior to testing.

NOTE 1 For factors influencing the core strength, see Annex A.

NOTE 2 For practical reasons, 3 days of exposure is not feasible; record the period of exposure, if any. The influence of this deviation from standard procedures should be evaluated.

Where the in-situ strength is determined from cores:
- testing a core with equal length and a nominal diameter of 100 mm gives a strength value equivalent to the strength value of a 150 mm cube manufactured and cured under the same conditions;
- testing a core with a nominal diameter at least 100 mm and not larger than 150 mm and with a length to diameter ratio equal to 2.0 gives a strength value equivalent to the strength value of a 150 mm by 300 mm cylinder manufactured and cured under the same conditions;
- the transposition of the test results from cores with diameters from 50 mm up to 150 mm and other length to diameter ratios shall be based on conversion factors of established suitability.

NOTE 3 Conversion factors of established suitability for other specimen sizes and length to diameter ratios may be given in provisions valid in the place of use or prescribed by the project specification.

7.2 Number of test specimens

The number of cores to be taken from one test region shall be determined by the volume of concrete involved and the purpose for the testing of cores. Each test location comprises one core.

For assessment of in-situ compressive strength for statistical and safety reasons, as many cores as are practicable should be used.

An assessment of in-situ compressive strength for a particular test region shall be based on at least 3 cores.

NOTE The number of specimens identified above relates to cores with a nominal diameter of at least 100 mm. The number of cores should be increased when the nominal diameter is less than 100 mm, see 7.3.1.

7.3 Assessment

7.3.1 General

In-situ characteristic compressive strength is assessed using either approach A in 7.3.2 or approach B in 7.3.3.

Approach A applies where at least 15 cores are available. Approach B applies where 3 to 14 cores are available. The applicability of the two approaches to the assessment of the strength of concrete in existing structures, about which there is no prior knowledge, may be defined in the-place of use.

EN 13791:2007 (E)

7.3.2 Approach A

The estimated in-situ characteristic strength of the test region is the lower value of:

\[
\bar{f}_{ck1} = \bar{f}_{ck,1} - k_1 \times s_1
\]

or

\[
\bar{f}_{ck1} = \bar{f}_{ck,min} + 4
\]

where

- \(s_1\) is the standard deviation of the test results or 2.0 N/mm², whichever is the higher value.
- \(k_1\) is given in national provisions or, if no value is given, taken as 1.45.

The strength class is obtained from Table 1 using the estimated in-situ characteristic strength.

NOTE 1 The estimate of characteristic strength using the lowest core result should reflect the confidence that the lowest core result represents the lowest strength in the structure or component under consideration.

NOTE 2 Where the distribution of the core strength appears to come from two populations, the region may be split into two test regions.

7.3.3 Approach B

The estimated in-situ characteristic strength of the test region is the lower value of:

\[
\bar{f}_{ck2} = \bar{f}_{ck,2} - k_2 \times s_2
\]

or

\[
\bar{f}_{ck2} = \bar{f}_{ck,min} + 4
\]

The margin \(k_2\) depends on the number \(n\) of test results and the appropriate value is selected from Table 2.

Table 2 – Margin \(k\) associated with small numbers of test results

<table>
<thead>
<tr>
<th>(n)</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 to 14</td>
<td>5</td>
</tr>
<tr>
<td>7 to 9</td>
<td>6</td>
</tr>
<tr>
<td>3 to 6</td>
<td>7</td>
</tr>
</tbody>
</table>

NOTE Because of the uncertainty associated with small numbers of test results and the need to preserve the same level of reliability, this approach gives estimates of characteristic strengths that are generally lower than those obtained with more test results. Where the estimates of in-situ characteristic strength are judged to be too conservative, it is recommended that more cores are taken or a combined technique approach, see 7.4.4, is used to obtain more test results. For this reason, this approach should not be used in cases of dispute over the quality of concrete based on standard test data, see clause 6 for details of a suitable approach.
CARBONATION DEPTH - UNI 9944/1992

Principle: Carbonation of concrete occurs when the carbon dioxide, in the atmosphere in the presence of moisture, reacts with hydrated cement minerals to produce carbonates, e.g. calcium carbonate

- The carbonation process is also called **depassivation**
- It is a **slow** process → the time required for carbonation can be estimated knowing the concrete grade → the greater is the concrete strength, the slower is the phenomenon of carbonation
- Carbonation implies a pH decreasing → concrete **pH** becomes acid (<12.5)
- Alkaline environment which protect rebars disappears → **corrosion**

On site tests on existing structures: the knowledge process
On site tests on existing structures: the knowledge process

CARBONATION DEPTH - UNI 9944/1992

- spraying a freshly exposed surface of the concrete with a 1% phenolphthalein solution (core just sampled or as soon as the execution of the compression test)
- the calcium hydroxide is coloured pink
- the carbonated portion is uncoloured
- test can be performed on the dust from drilling the concrete element
TENSILE TESTS ON REBARS

Aim: evaluation of mechanical properties of reinforcement bars

- on site sampling of rebar pieces

- results:
 - yield strength
 - failure strength
 - failure elongation
RADIOGRAPHIC TESTING

Principle: The intensity of a beam of X rays or gamma rays suffers a loss of intensity while passing through a material → it depends on the quality of radiation, the density of the material and the thickness traversed.

IAEA, 2002
On site tests on existing structures: the knowledge process

RADIOGRAPHIC TESTING

Benefit

- locate the position of reinforcement bar in reinforced concrete
- estimates of bar diameter and depth below the surface
- revealing the presence of voids, cracks and foreign materials
- the presence or absence of grouting in post tensioned construction
- variations in the density of the concrete.
On site tests on existing structures: the knowledge process

RADIOGRAPHIC TESTING

Limitations

- need to re-elaborate images ➔ collimation, filtering, etc...
- interpretation of concrete radiographs is difficult ➔ no standardized terminology for imperfections and no standardized acceptance criteria
- more used in laboratory, rather than on site
- the technique is possible only when it is possible to have access, at least, two sides of the structure
RADIOGRAPHIC TESTING

<table>
<thead>
<tr>
<th>Technique</th>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>All radiography techniques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray</td>
<td>Useful for examining internal macrostructure, e.g., steel location and voids, or microstructure, e.g., steel location and voids, or microstructure</td>
<td>Expensive
Require skilled operators
Require license to operate
Require radiation safety program
Thin cracks or planar defects perpendicular to radiation beam may be difficult to detect</td>
</tr>
<tr>
<td>Gamma ray</td>
<td>Useful for examining internal macrostructure, e.g., steel location and voids, or microstructure
More portable than X-ray
Less expensive than X-ray
No electrical power required</td>
<td>Primarily a research tool
View through concrete up to 18 in. (0.5 m) thick
Long exposure times</td>
</tr>
<tr>
<td>Neutron</td>
<td>Useful for examining microstructure</td>
<td>Primarily a research tool
Very expensive initially
Little advantage over other radiography methods for most applications on concrete</td>
</tr>
</tbody>
</table>

Handbook on nondestructive testing on concrete, 2004
On site tests on existing structures: the knowledge process

RADIOGRAPHIC TESTING
BS1881 Part 205:1986 Testing Concrete - Recommendations for the Radiography of Concrete”
- radiation sources → according to concrete thickness

<table>
<thead>
<tr>
<th>Source</th>
<th>Approximate concrete thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
</tr>
<tr>
<td>Co-60</td>
<td>125 mm</td>
</tr>
<tr>
<td>Ir-192</td>
<td>25 mm</td>
</tr>
<tr>
<td>Linac, 18 MeV X rays</td>
<td>500 mm</td>
</tr>
</tbody>
</table>

- type of film and overlap of film
- lead intensifying screens
- calculation of geometric unsharpness and source-to-film distance
- calculation of exposure time
- alignment of the beam
- image quality
INFRARED TERMOGRAPHY

Principle: According to the fundamental Law of Planck all objects above absolute zero emit infrared radiation

- **active** → forced heating to the surfaces analyzed are applied
- **passive** → analyses the radiation of a surface during thermal cycles
- the thermograms taken with an infrared camera measure the temperature distribution at the surface of the object at the time of the test
- the temperatures measured are influenced by three factors:
 - subsurface configuration
 - surface condition
 - environment
INFRARED THERMOGRAPHY

Subsurface configuration

- the detectability of any internal structure such as voids, delaminations or layer thicknesses depends on the physical properties of the materials of the test object → heat capacity, heat conductivity, density, emissivity

- if the temperature changes on the surface there is a delay before the effect of this change occurs below where a defect such as a void occurs
INFRARED THERMOGRAPHY

Surface condition

- has a profound effect upon the ability of the surface to transfer energy by radiation (emissivity)
- rough concrete may have an emissivity of 0.95
- shiny metal may have an emissivity of 0.05
On site tests on existing structures: the knowledge process

INFRARED THERMOGRAPHY

Environment → when solar radiation would produce the most rapid heating or cooling of the concrete surface

- solar radiation
- cloud cover
- ambient temperature (> 0°C)
- wind speed (< 25 km/h)
- surface moisture

when inspecting areas where shadows occur, it is preferable to perform the inspection after sunset since during daylight hours the shadows move and can result in confusing test results
INFRARED TERMOGRAPHY

Benefit

- identification of superficial defects and areas containing humidity
- interface analysis of FRP laminates externally bonded to RC beams → identification of subsurface defects at the fiber–substrate interface
INFRARED TERMOGRAPHY

Advantages

- Fast and detailed for great areas
- Usable also for unreachable structure
- Usable also during night-time

Disadvantages

- Results dependent from environmental conditions
- Results dependent from the emissivity of different materials
On site tests on existing structures: the knowledge process

RADAR

Principle: based on the propagation of *electromagnetic energy* through materials of different dielectric constants → the greater the difference between dielectric constants at an interface between two materials, the greater the amount of electromagnetic *energy reflected* at the interface
On site tests on existing structures: the knowledge process

RADAR

Testing procedure

- utilize 1 ÷ 1.5 GHz radar wave, against structure, and register the return signal
- high frequency give accurate tests, while low frequencies (100-500 MHz), increase the depth of penetration

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Centre Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 - 0.5</td>
<td>1500</td>
</tr>
<tr>
<td>0.5 - 1</td>
<td>1000</td>
</tr>
<tr>
<td>1 - 2</td>
<td>500</td>
</tr>
<tr>
<td>2+</td>
<td>200</td>
</tr>
<tr>
<td>7.0</td>
<td>100</td>
</tr>
</tbody>
</table>
RADAR

Accuracy and interpretation

- hyperbolic shapes typically represent a point reflector
- the diameter of cylindrical objects ranging from rebars to metallic oil drums cannot be determined from radargrams
- radar wave velocity reduces and are more rapidly attenuated when travelling through wet concrete
- radar waves cannot penetrate conductors such as: metals, clays, salt water, e.g. sea water
RADAR

Advantages

- is free of the restriction of ambient conditions
- homogeneity of the concrete
- detecting localized loss of bond between the overlay and the concrete
- detecting delaminations in the concrete
- depth, spacing and omission of reinforcing steel

Disadvantages

- difficulty to interpret the signals
- reliant on the experience of the operator
- radar waves cannot penetrate conductors
RESISTIVITY MEASUREMENT

Principle: the ability of corrosion currents to flow through the concrete can be assessed in terms of the electrolytic resistivity of the material → this resistivity can determine the rate of corrosion once reinforcement is no longer passive

\[\rho = 2\pi s V/I \]

Apparent resistivity

<table>
<thead>
<tr>
<th>Resistivity (ohm cm)</th>
<th>Likely Corrosion Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 5,000</td>
<td>Very high</td>
</tr>
<tr>
<td>5,000 – 10,000</td>
<td>High</td>
</tr>
<tr>
<td>10,000 – 20,000</td>
<td>Low / Moderate</td>
</tr>
<tr>
<td>Greater than 20,000</td>
<td>Negligible</td>
</tr>
</tbody>
</table>
RESISTIVITY MEASUREMENT

Advantages

- The test give almost exact results to quantify rebar corrosion in general terms, where the resistivity is low, the probability of corrosion of the bars is higher, and vice versa.

Disadvantages

- The presence of steel reinforcement close to the measurement location, surface layers due to carbonation or surface wetting can cause an underestimate in the assessment of concrete resistivity.
- Measurements on a very small member section or close to a section edge may result in an overestimate of the resistivity.
- Measurements will fluctuate with changes in ambient temperature and with rainfall.
Foundation and soil testing
The characterization of mechanical properties of soils could be determined through tests performed in different locations and for different goals:
Quality control procedures shall be supplemented with an extensive range of pile and in situ soil testing. These can be grouped as static, dynamic and in situ testing.

STATIC TESTING are employed determines the relationship between load and settlement, or to verify that the capacity of a pile exceeds the specified load. The constant rate of penetration technique can determine ultimate pile bearing capacity.

- Tension pile method
- Kentledge
- Anchor stressing

DYNAMIC TESTING is an economical alternative to conventional static load testing, eliminating the need for costly proof loading. Integrity testing economically and reliably determines pile concrete and section uniformity.

- Dynamic load testing
- Integrity testing

IN SITU TESTING SOIL TESTING provides an accurate appraisal of the soil mechanics parameters used in the pile design, and is particularly useful where only limited site investigation data is available.

- S.P.T
- Cohesion strength
- Moisture content
- Plasticity and heave analysis
- Soil mineralogy
The mechanical properties of soils are determined on laboratory tests typically through specimens obtained from boring. The reliability of results is strictly related to the disturbance degree during boring and transportation. For these reasons in situ tests are needed also because they assess the mechanical characteristic directly on soil.
Gathering and storage of specimens

BOREHOLE LOGS

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>COD</th>
<th>D.P.T.</th>
<th>P.T.</th>
<th>Value T.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sonda grinta, con vasca di terne, con cerchio a grinta</td>
<td>5.00</td>
<td>1.40</td>
<td>1.40</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>sonda grinta, con vasca di terne, con cerchio a grinta</td>
<td>5.00</td>
<td>1.40</td>
<td>1.40</td>
<td>1.40</td>
</tr>
</tbody>
</table>

INVESTIGATION METHODOLOGIES AND TECHNIQUES
Foundation and soil testing

By comparing different analyses and borehole logs in different positions a three dimensional restitution is possible. This allows to understand a possible development of soil.

Scrovegni’s chapel, Padova
Inside the chapel there are Giotto’s frescoes
Foundation and soil testing

CONE PENETRATION TEST

The CPT is a static penetration test where the cone is pushed into the soil with average speed of 2 cm/sec. The cone has a base area of approximately 10 square centimeters. The cone could have also further functions:

- **CPTU** That measures also the water pressure thus also the overpressure inside cohesive soils
- **SCPT** That measures the waves generated by an instrumented hammer to characterize the velocity of shear waves.

Instead another test is the SPT where the instrument is driven into the soil and it is measured the number of shots.

Graphical results of CPT tests, Venice’s Lagoon
Dynamic behaviour and waves velocity

There are many types of tests:

- **ON THE SURFACE**
- **INTO THE SOIL**

ON THE SURFACE

- **Methodology:** The test is based on studying different velocities of seismic waves that are related to different types of soils using refracted wave measured by accelerometers on the surface.

- **Supplementary methods:** These tests are useful in ground investigation but for a correct interpretation they require direct tests too (e.g. boring).

INTO THE SOIL

- **Methodology:** The test is based on studying different velocities of seismic waves using the source or the receiver inside bore or in some case both of them into the bore.

Seismic refraction method

Result of a test (Campo, VR, Italy)
Monitoring techniques & strategies
SHM: Introduction

- Needs for an effective seismic protection and vulnerability reduction of infrastructures, strategic structures and Cultural Heritage (CH) buildings;

- Historic buildings, due to their structural features, construction techniques and used materials, are particularly vulnerable to earthquake actions;

Structural Health Monitoring (SHM)

A measure of passive mitigation of earthquake effects

- Continuous or short/medium-term controls of quantities related to the structural behavior and connected to the evaluation of their evolution with the passing of time;

- Large number of applications in the field of civil engineering such as: design, damage detection and assessment, maintenance and retrofitting of existing structures, structural control during earthquakes (using semi-active systems).
INVESTIGATION METHODOLOGIES AND TECHNIQUES

Structural Health Monitoring

- **Continuous**
 - Observation of quantities that accumulate
 - Crack patterns, stress states, etc.

- **Discontinuous**
 - Observing changes of quantities with respect to a stationary state
 - Dynamic excitations, static loads, etc.

- **Static**
 - Observation quantities resulting from quasi-static effects of external actions
 - Displacements, strains, heights, tension, stiffness, temperature, cracks, sagging, out of plumb, rotation, deterioration, damage

- **Dynamic**
 - Survey of time-history of mechanical vibrations
 - Acceleration, velocity, displacement func. time, excitations amb., artificial

- **Periodic**
 - Observation of quantities at regular intervals of time

- **Permanent**
 - Observation of quantities at very dense intervals
Monitoring techniques & strategies

MONITORING TECHNIQUES

STATIC

- Measurement of static time-dependent parameters that vary slowly
- Controls of: crack pattern, activation of collapse mechanisms, state of stress and strain, variation of environmental parameters, ...
- Local controls and damage identification

DYNAMIC

- Measurements of ambient vibrations or exceptional events (e.g. earthquakes)
- Identification of dynamic time-dependent parameters (modal parameters)
- Continuous, trigger-based or punctual
- Global controls and damage identification
Monitoring techniques & strategies

Structural problems vs. monitoring strategy

<table>
<thead>
<tr>
<th>Location</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>substructure</td>
<td>settlements</td>
</tr>
</tbody>
</table>

Related problems:
- cracks opening, tilting of tall structures, ...

Monitoring strategy:
- control of settlements & environmental

Monitored entity-ies:
- distance, environment

Technology:
- borehole extensometers, telemetry (level),
- T and RH sensors, piezometers (water table level)...

![Images of monitoring equipment including a rod extensometer, piezometers, T-RH sensor, and level.](image-url)
Structural problems vs. monitoring strategy

Location: substructure
Observation: settlements

Settlements of the structure can be measured related to reference points, by means of telemetry (i.e. levels), or in terms of settlements on the underlying soil, at different depths (rod extensometers).
Application of SHM to Cultural Heritage structures

INVESTIGATION METHODOLOGIES AND TECHNIQUES

DATA COLLECTION
(geometry, materials, morphology, damage)

DESIGN OF MONITORING

MONITORING

MODEL PREPARATION

UPDATING & VALIDATION

SEISMIC ASSESSMENT
(BEFORE INTERVENTION)

SEISMIC ASSESSMENT
(AFTER INTERVENTION)

DESIGN ALTERNATIVE SOLUTIONS

EVALUATION+
DECISIONS

EXECUTION

INCREMENTAL APPROACH

QUALITY ASSESSMENT
(SHORT / LONG TERM)

Workpackage 9, Knowledge based assessment, EU FP7 NIKER Project
Application of SHM

Role of Monitoring

- **Investigation Phase**
 - Dynamic characterization
 - Model updating
 - Damage Identification
 - Emergency actions

- **Execution Phase**
 - Structural controls before, during and after the execution
 - Incremental approach and sequential interventions

- **Evaluation Phase**
 - Assessment of interventions’ influence on the structural response
 - Assessment of interventions’ effectiveness
 - Evaluation of possible upgrading solutions

- **Maintenance Phase**
 - Long-term monitoring program
 - Assessment of long-term effectiveness and durability of interventions
 - Quality control plans, maintenance works and corrective measures

Work Package 9, Knowledge based assessment, NIKER Project - EU FP7
10. Application of SHM to bridges

Ponte Nuovo del Popolo - Verona

Three-span concrete bridge: total length 90.5 m, central span 33.5 m, side spans 27.5 m. 4 lanes and 2 sidewalks for a width of deck equal to 14.45m. Original bridge of 1179, destroyed 6 times. The current bridge dates back to 1946.
Dynamic identification. OMA su 11 setup utilizzando sette accelerometri piezoelettrici ad alta sensibilità, in grado di registrare le vibrazioni nell’intervallo tra 0-100Hz.
LIMITS OF THE EXISTING TOOLS FOR THE ANALYSIS OF STRUCTURAL RESPONSE TO STATIC AND DYNAMIC ACTIONS

- PC all in one, 24”, CPU atom 1.6 GHz, 2 Gb RAM, 160 Gb hard disk;
- 2 accelerometer modules NI 9234, 4 channel 24bit, 51.2KS/s;
- master realtime embedded NI 9792, cpu 533MHz, 2GB disco, 256MB ram, VXWorks OS;
- 1 tensione module NI 9215, 4 canali, 16bit, 100KS/s;
LIMITS OF THE EXISTING TOOLS FOR THE ANALYSIS OF STRUCTURAL RESPONSE TO STATIC AND DYNAMIC ACTIONS

Static Monitoring

Displacement of the principal girders

Spostamenti relativi monitorati dal sensore PZ01 e PZ02
Monitoring of the seismic event (20/05/2012)

<table>
<thead>
<tr>
<th>PGA</th>
<th>Peak on the Bridge</th>
<th>Amplification factor on the Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.074</td>
<td>0.84</td>
<td>11.35</td>
</tr>
<tr>
<td>-0.070</td>
<td>-0.82</td>
<td>11.71</td>
</tr>
</tbody>
</table>
Thanks for your attention!

claudio.modena@dicea.unipd.it

claudio.modena@smingegneria.it

www.smingegneria.it