DOCUMENTATION, ASSESSMENT AND INTERVENTIONS TO THE MAIN CHURCH OF DAPHNI MONASTERY

E. Vintzileou Acre, Dec. 17th, 2012 The Dafni Monastery (built in the 11th century) is one of the most important byzantine monuments in Greece (mainly because of the mosaics of the Katholikon, (UNESCO-list of world monuments)).

THE TYPOLOGY OF THE KATHOLIKON

Octagonal

Twelve piers (forming a square plan) and the pendatives support the dome.

THE MONUMENT IS CONSTRUCTED IN A HIGHLY SEISMIC AREA

A monument that has sustained many damages and numerous interventions

DOCUMENTED: Historical pathology

Earthquakes (Ms>6) that have affected the Monastery

Year	Ms	Location	
1837	6,2	Hydra	
1853	6,8	Thiva	
1858	6,7	Corinth	
1876	6,1	Corinth	
1887	6,3	Corinth	
1891	6,3	Kythnos	
1894	7,0	Athens	
1928	6,3	Corinth	
1938	6,0	Attica	
1948	6,4	Spetses	
1981	6,7	Corinth	
1981	6,4	Boeotia	
1981	6,4	Boeotia	
1999	5,9	Athens	

CONSTRUCTION PHASES- HISTORICAL PATHOLOGY AND MORE RECENT

HISTORICAL PATHOLOGY AND MORE RECENT INTERVENTIONS

Removal and replacement of mosaics by Italian conservators (NOVO, 1890-1897). Use of hydraulic lime

Use of cement in the more recent interventions

HISTORICAL PATHOLOGY AND MORE RECENT INTERVENTIONS

Rather minor damages to the mosaics due to the 1981 earthquake-No measures were taken

HISTORICAL PATHOLOGY

The coloured parts are reconstructed.

RECENT PATHOLOGY AFTER THE 1999 EARTHQUAKE

Earthquake of September 7th, 1999

Numerous inlays were covering the pavement. They were collected systematically and nets were placed under each mosaic as a first protective measure (to avoid losses).

- Catholikon
- Cells
- Walls
- Auxiliary buildings

Severe

damages

RECENT PATHOLOGY AFTER THE 1999 EARTHQUAKE

Severe damages in the mosaics, even in locations where masonry was not cracked

ΙΣΤΟΡΙΚΟ ΜΕΛΕΤΩΝ, ΕΡΕΥΝΩΝ ΚΑΙ ΕΡΓΩΝ

IMMEDIATE PROTECTIVE MEASURES: BUTTRESSES, SHORING, ...

The Ministry of Culture has organized and co-funded (with EU) a large scale programme for the exhaustive documentation of the monument to serve the final purpose of repair and strengthening of the monument.

- (a) Ministry of Culture: Archaeological data, historical pathology, recognition of the various phases and previous interventions to the monument.
- (b) Geophysical methods (identification of ruins in foundation level)-Univ. of Patras
- (c) Installation of monitoring system-Geodynamic Institute of Athens and LEE/NTUA
- (d) Photogrammetry: Survey of the monument-Fac. of Survey Eng./NTUA
- (e) Borings-geotechnical data: Faculty of Civil Engineering/ NTUA
- (f) Chemical analysis of materials-Aristotle Univ. of Thessaloniki
- (g) Structural behaviour of the monument-Lab. of RC/NTUA

DOCUMENTATION AND INTERPRETATION OF PATHOLOGY

TRANSVERSE SECTIONS

MORE SEVERE DAMAGES TOWARDS THE TOP (WHERE MOSAICS ARE LOCATED)

SIGNIFICANT OUT-OF-PLANE DISPLACEMENTS OF THE WALLS, ESPECIALLY ALONG THE N-S DIRECTION (SMALLER STIFFNESS)

DOCUMENTATION AND INTERPRETATION OF PATHOLOGY

Documented by the frozen out-of-plane displacement of south wall, as well as by analytical work.

Therefore, there is a tendency of the building "to open" in the north-south direction

DOCUMENTATION AND INTERPRETATION OF PATHOLOGY

SIMILAR DAMAGES

THUS, A SPECIFIC STUDY IS NEEDED FOR THE SELECTION OF THE OPTIMAL INTERVENTIONS (ASSESSMENT OF THE EFFICIENCY OF VARIOUS TECHNIQUES, USING-AS MUCH AS POSSIBLE-RELIABLE DATA AND RELIABLE MODELS AND ANALYTICAL METHODS).

ESTIMATION OF CURRENT RESISTANCES

IDENTIFICATION OF CONSTRUCTION TYPE OF MASONRY

IDENTIFICATION OF CONSTRUCTION TYPE OF MASONRY

Investigation through radar and boroscopy (for verification).

Lower zone (hor./vert.)

0,24m thick intermediate leaf

Upper zone (hor./vert.)

0,32m thick intermediate leaf

IN-LABORATORY ASSESSMENT OF MECHANICAL PROPERTIES OF

The decision was taken to simulate the masonry of the upper zone (where damages are concentrated).

FACE 2

MASONRY

SIDE 1

SIDE 2

IN-LABORATORY ASSESSMENT OF MECHANICAL PROPERTIES OF

MASONRY

Wallettes in compression

Wallette	$\sigma_{max}(MPa)$	$\varepsilon_v (^0/_{00})$	$E_0(GPa)$	E_0/σ_{max}
1	1.82	*	1.0	594.45
2	1.74	-1.6	1.44	827.59
3	2.26	-2.25	1.5	663.72

(*) Unreliable measurements of some of the LVDTs

Wallettes in diagonal compression

IN-LABORATORY ASSESSMENT OF MECHANICAL PROPERTIES OF MASONRY

TERNAF	RY GROUT										
White Danish	Lime (powder)	Pozzolan (d _{max} <75µm)	Superplas -ticizer	Water	Со	Compressive (f_{gc}) and flexural (f_{gt}) strength (MPa)			gt)		
cement			SP1			Age (da		lays)	ys)		
					28	28		90		180	
30	25	45	1	80	f_{gc}	f_{gt}	f_{gc}	f_{gt}	f_{gc}	f_{gt}	
					4.08	2.11	8.16	2.29	10.6	3.13	
NHL5-BASED GROUT											
NHL5 ((St Astier)	Superplastic	cizer SP2	Water							
1	100	1		80	2.82	2.47	4.50	2.52	6.36	3.87	
			Sand colu	T_{36} (sec) umn 1.25/2.50) mm	t _{d=4.7n}	nm (sec)		Bleedin	lg	
TEDNAD	VCPOUT		(VOIUS	<u>5~0.2-0.4 IIIII</u> 10)	<u></u>	0.5		20/		
				17			$\frac{0.5}{2}$		270 20/		
NHL2-BA	ASED GRO	UI		22.3		4	22		3%		

Two alternative grout mixes were designed. All tests (that are necessary for the assessment of rheological, physical, chemical and mechanical properties of the grout) were carried out.

IN-LABORATORY ASSESSMENT OF MECHANICAL PROPERTIES OF

Drilling of holes and installation of plastic tubes

MASONRY

Drilling holes

Sealing cracks

Installing tubes

Holes at distances 0.5-1.0m ≤thickness of masonry + along cracks

Holes deep enough to reach filling material

Transparent tubes (1.0 to 10.0mm)

Tubes are numbered and reported on drawings

IN-LABORATORY ASSESSMENT OF MECHANICAL PROPERTIES OF MASONRY

Application at low pressure (0.5-1.0 bar). Average percentage of voids:~37%

Humidity on wall surface

Mixer and mechanical device for mixing the grout during injection

IN-LABORATORY ASSESSMENT OF MECHANICAL PROPERTIES OF MASONRY

Compression

Diagonal compression

BEHAVIOUR OF A CROSS VAULT

TEST 1. as built: Motion along X and Y directions

TEST 2. Strengthened with grouts+steel ties in the arches: Motion along the (strong) X direction.

TEST 3. strengthened: Motion along X and Y directions.

BEHAVIOUR OF A CROSS VAULT

PIERS

- Grouting of diagonal cracks [natural hydraulic lime based grout using S&B pozzolan (perlite)].
- Strengthened for out-of-plane bending, using post-tensioned CFRP plates placed vertically on both faces of the piers (CarboDur 624, SIKA), (0.20MPa per pier).

ARCH/VAULT

- Grouting of cracks of the arch and the vault .
- Horizontal timber elements (struts) and steel elements (ties) at the base of the arches.

BEHAVIOUR OF A CROSS VAULT

Vertical prestressing of piers

Irpi	nia, Italy	,18	80 Eacitat	iquak	Directio	Amplification
No. of	Excitatio	of test	Direction of	Ampli of or	fication excitation riginal n	of original o record
lesi		1	Sine swee			-
1	White-noise	2	Sine swee)	- ү	
2	White-noise		Ap	olication		
3	White-noise		Z AP	olication		
4	Irpinia earthquak	÷ 3	Sinexswee	D 3	0% X	
5	Irpinia earthquak	4	Sine ^x swee	p5	0% Y	
6	Irpinia earthquak	5	Irpinia eart	nguake ⁷	^{5%} X-Y	50%
7	Irpinia earthquak	6		hausko		100%
8	Irpinia earthquak	, O	liplin a eart	iyuar o j	25% ^- 1	10076
9	Irpinia earthquak	e 7	Irpinia eart	hquake	50% X-Y	150%
10	Irpinia earthquak	8	Irpinia eart	hquake ¹	^{75%} X-Y	200%
11	Irpinia earthquak	<u>9</u>	Irpinia eart	20 hauake	^{00%} X-Y	250%
12	Irpinia earthquak			hauaka	50% X-V	300%
13	Irpinia earthquak			Iquakes	0% X-1	0500/0
14	Irpinia earthquak	e 11	Irpinka eart	nquakes	50% X-Y	350%
15	Irpinia earthquak	• <u>12</u>	Irpinta eart	hquake	0% X-Y	400%
16	Irpinia earthquak	13	Irpinia		X-Y	450%
17	Irpinia earthquak					
18	Irpinia earthquak		eartnqua	Ke		
19	Irpinia earthquak	[•] 14	<u>Sině šwee</u>	D 10	^{00%} X	-
20	Irpinia	15	Sine swee	o 15	0% Y	
	earthquak	0				

DESIGN OF INTERVENTIONS AND APPLICATION IN TWO PHASES

2ND PHASE OF INTERVENTIONS Strengthening measures (confinement of piers, struts/ties, diaphragms, etc.)

2012: THE DESIGN OF MEASURES OF THE 2ND PHASE WAS COMPLETED

SEISMIC RISK ASSESSMENT

The seismicity of a broad area is included, in order to take into account the large number of active faults of surrounding regions (e.g. east Corinthian gulf, Boeotia, west Attica) that have affected the monument in the past.

On the basis of the characteristics of the seismic events of the selected regions, in combination with the dynamic characteristics of the monument, the expected peak ground acceleration was estimated (50 years, 10% probability of exceedance).

MONITORING-DYNAMIC PROPERTIES

Reliable and critical information about the response of the monument to seismic actions, before, during and after the application of interventions

- Equipment for the collection of data during a seismic event
- Data recording through a system installed in situ, as well as at the NTUA
 - Evaluation of results

THE EQUIPMENT

 Accelerometres: Measuring the acceleration due to an earthquake at three levels (interior and exterior of the monument), as well as on the ground.

Displacement-metres: Measuring displacements in the interior of the monument (at the base of the system of domes and vaults).

MONITORING-DYNAMIC PROPERTIES

• Residual deformation along the N-S direction

 Increase of the eigenfrequency, reduction of the period of vibration and reduction of the damping

DYNAMIC AMPLIFICATION FACTORS

ΙΔΙΟΣΥΧΝΟΤΗΤΑ ΚΑΤΑΣΚΕΥΗΣ

2ND PHASE OF INTERVENTIONS

a) Assessment of the efficiency of interventions through analyses of the behaviour of the monument with and without interventions, using reliable models calibrated on the basis of the results of the monitoring system, as well as on their ability to "reproduce" the current pathology of the monument.

b) Design of interventions, after in-situ check of their applicability, taking into account the actual geometry of various parts of the monument and, of course, the locations of mosaics that must be protected.

c) All 3D drawings that are necessary for the proposed interventions to be identified, as well as adequate plans and sections, so that the possibility of applying hidden and visible interventions be fully documented. The effects of the interventions on the appearance of the monument should also be fully documented.

NEW MODELS

THE CUPOLA

THE ENTIRE MONUMENT

Equivalent static analysis

Equivalent static analysis

and Time-history analyses

CALIBRATION OF MODELS

THE DATA WERE USED FOR THE CALIBRATION OF THE MODELS

CALIBRATION OF MODELS

CALIBRATION OF MODELS

COMPARISON WITH ACCEL. MEASURED DURING EARTHQUAKES 4/10/08, 02/09/09

REPRODUCTION OF OBSERVED DAMAGES-PENDATIVES-ARCHES

REPRODUCTION OF OBSERVED DAMAGES-CUPOLA

REPRODUCTION OF OBSERVED DAMAGES

ASSESSMENT OF EFFICIENCY OF ALL INTERVENTION MEASURES ON THE ENTIRE BUILDING

Example 1. Diaphragms at the extrados of domes and vaults

ALTERNATIVE INTERVENTION MEASURES-analysis of the entire building

Dimensioning of ties

INTERVENTIONS

Replacement of existing steel ring

New (stainless) steel ring

New (non visible) steel ring at the extrados of the cupola

Diaphragms at the extrados of domes and vaults & diaphragm at the exo-narthex

INTERVENTIONS

Diaphragm at the western part

Steel diaphragms with timber pavement or without pavement

View of the monument after intervention

INTERVENTIONS

MOST OF THEM-INVISIBLE

EFFICIENCY OF INTERVENTION MEASURES

Significant improvement of the seismic behaviour of the monument is achieved. However, damages are to be expected in case of a strong earthquake!

The entire work for the documentation and for the design of immediate measures was performed by a group supervised by Dr Androniki Miltiadou (Str.Engineer) and N.Delinicolas (Architect).

Group for the design of the final intervention measures: Dr A.Miltiadou, N.Delinicolas,

E.Vintzileou, H.Mouzakis, J.Dourakopoulos, P.Giannopoulos.

The entire project is co-funded by the Greek State and EU.