NEW INTEGRATED KNOWLEDGE BASED APPROACHES TO THE PROTECTION OF CULTURAL HERITAGE FROM EARTHQUAKE INDUCED RISK FP7-ENV-2009-1

SEVENTH FRAMEWORK

Case Study Monastery of Jerónimos, Lisbon, Portugal

Paulo B. Lourenço Universidade do Minho Department of Civil Engineering Guimarães, Portugal

isise Institute for Sustainability and Innovation in Structural Engineering

Description

The crown asset of Portuguese heritage buildings **Construction from 1499 Built with limestone Considerable dimensions** in plan, more than $300 \times$ 50 m², and an average height of 20 m (50 m in the towers)

3

Evolves around two courts. The larger court is bordered by a long arcade of two levels that hosts the Ethnographic Museum of Archaeology and the Maritime Museum. The smaller court or the Cloister is bordered by the Church, the Sacristy, the Chapter Room, the Refectory

Institute for Sustainability and Innovation in Structural Engineering

Local Seismicity

Gathered data

isise Institute for Sustainability and Innovation in Structural Engineering

Universidade do Minho

5

Church

isise

In situ investigation

Tiles removal for visual inspection

Radar inspection

Wallets for supporting tiles (20th century) Ribs vis

Ribs visual inspection

6

ISISE Institute for Sustainability and Innovation in Structural Engineering

In situ geometrical survey

Longitudinal cross-section

Plan of the nave

Transept cross-section

Nave cross-sections

×

7

Tilting of the columns and GPR of the columns

8

isise Institute for Sustainability and Innovation in Structural Engineering

Modal Identification of the Church

9

Mode I

Mode II

Static Monitoring System (I)

Measure deformations and temperature variations of two columns in the main nave

The system is focused on the columns structural observation, because they are the best measure of the nave structural behavior

Universidade do Minho

Dynamic Monitoring System (I)

Accelerations measurements in two points: in the base and in the main nave

Due to the different technical characteristics and sampling rates data acquisitions, the dynamic monitoring system is physically separated from the static one.

Universidade do Minho

Dynamic Monitoring System (II)

Full Building Analysis

Full model with 135.000 dof

Modal superposition

Non-linear with equivalent static loading

Load-displacement diagram

Details

Nave Analysis

Transept Analysis

Incremental deformed mesh

Laboratory Testing

Stone and masonry testing

Model for Dynamic Analysis

3D beam element model

Calibration of the model – Dynamic identification

Example of column response in dynamic analysis

Results

Seismic action vs. horizontal displacement envelop for different nodes

Example of collapse mechanism

General view of the failure mechanism

Failure mode for the church

North façade

Virtual Collapse Mechanisms

Vertical loading

South façade

Possible Strengthening Measures

Case Study Monastery of Jerónimos, Lisbon, Portugal

Paulo B. Lourenço

pbl@civil.uminho.pt www.civil.uminho.pt/masonry

Universidade do Minho