Innovative testing solutions for safeguarding architectural heritage

Miloš Drdácký

Institute of Theoretical and Applied Mechanics of the Academy of Sciences of the Czech Republic, Centre of Excellence Telč

ARCCHIP

Acknowledgement to my research collaborators: ing. Z. Slížková, Ph.D., ing. J. Valach, Ph.D., ing. D. Vavřík, Ph.D. Ing. M. Kloiber, Ph.D., J. Lesák (MSc), ing. P. Zíma, ing. I. Jandejsek

Water uptake in situ measurements

Water uptake is measured in situ typically by means of the so called Karsten tube, which brings about many difficulties:

- > problems with fixing a heavy glass tube on vertical surfaces,
- impossible measurements on inclined surfaces and ceilings,
- > problems with sealing the contact ring area,
- a need for two operators one who follows the water movement in the measurement tube together with stop-watch
- and another who records readings,
- Soiling of surface with the sealing putty.

Micro-tube for digitized water uptake measurement

Mechanical part consists in 1 – scaled capillary tube in a tube holder adjustable in horizontal or vertical position (swivel connected), 2 – connecting plastic hose, 3 – outlet hinged head with a three point support, 4 – switch for manual recording data, 5 – connection cable to data storage unit

The innovated micro-tube method enables

- easy operation
- Fast operation
- easy storage of data and further elaboration
- > measurement on arbitrarily inclined surfaces
- considerate application (no soiling)
- measurement on highly curved surfaces

measurement in a dense array of points

Correlation of micro-tube water uptake and bending strength of detritic limestone with various porosity

Peeling ("Scotch tape") testing

The main doubts about the method lay in the fact that the loosen particles on the tested surface do not represent the "near surface" cohesion characteristics of the tested material.

If we repeat the peeling on the same place we observe a decrease of the released material and thus we see an apparent consolidation effect, which is false.

m(n)=A+B*exp(-C*n), where A=0.13627, B=0.60726, C=0.89117

Conclusion to the peeling testing

>The method is on one side quite sensitive to surface condition, on the other side one measurement does not give data for reproducible measurement of quantitative material (mechanical) characteristics describing state of material under the very near surface layer.

It seems that the change of released amounts of material from the surface which had been repeatedly touched in any manner - by repeated peeling testing, by application of consolidation treatment, by cleaning – may make the peeling material characterization after any treatment not objective, uncertain and not reproducible.

After repeated peeling the amount of released material starts to be almost constant.

The amount of detached material mostly correlates with the bending strength of the tested mortars or stone.

> The method is well applicable for relative assessment of material cohesion characteristics.

Testing of consolidation effects

Effect of impregnation of stone along the depth profile has been traditionally tested on thin slices which enable determination of bending strength, modulus of elasticity, dilation coefficients and vapour permeability. For mortars, special thin-walled test specimens are used.

Testing of wood – driven rod & screw pulling

Testing of wood – strength along depth profile

Testing of historic mortars - motivation

Specimens for testing ancient mortars of historic buildings are typically very flat - extracted from masonry bedding joints or from floors – & available in a small bulk

Testing of historic mortars

Non-standard specimen small sample testing of bending strength and Young modulus of elasticity

 $E = P (I - x) E J ((I - x)^{2} + 6 (I - x) x + 12x^{2}) / 8 (6 y J E_{1}J_{1} - P J x^{3})$

Testing of historic mortars

Non-standard specimen small sample testing of compression strength

Measured compression strength dependence on the slenderness ratio

$f_c = f_e (h/a)^{1,91} (h \le a, a = 40 mm)$

Digital image correlation - compression modulus of elasticity

Digital image correlation – natural fibres

Microscopic camera

Laboratory balance converted into a test frame

Fibre specimen glued between two metal sheet end fixtures and provided with two contrast marks

Fibers or fibrous particles	Abb rev	Nominal length (mm)	Equivalent diameter (μm)	Tensile strength (MPa)	Modulus of elasticity (GPa)	Elongation at failure (%)	Moisture (%)
goat hair	Ko	50	30-100	110-230	6.2-7.7	2-29	negligible
horse hair	Ku	50	50-140	110-200	3.9-5.1	4.5-32	negligible

Horse hair stress / strain diagram

Evolution of fibre visual appearance

Other newly developed methods

New research infrastructure for cultural heritage interdisciplinary research with climatic wind tunnel, x-ray and neutron radiography lab, mobile laboratory for emergency situations, corrosion stations, monitoring networks, databases on material and structural data in a World Heritage City of Telč, Czech Republic

EVROPSKA UNIE EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ NVESTICE DO VAŠÍ BUDOUCNOSTI

CET – climatic wind tunnel

CET – X-ray micro tomography

Thank you for your attention

Nanolime consolidation effect

